ntr 606 titanium dioxide manufacturer

...

 Fourth, since the sulfate required for the production of the present invention is provided by the acid leaching slag itself, the mass fraction of the SO/- contained in the acid leaching slag is 15% or more, and the nanometer is prepared by using the acid leaching residue as the zinc and sulfate raw material of the lithopone. Lide powder products not only realize the resource utilization of acid leaching slag, but also turn waste into treasure, and treat and improve the acidic soil of acid leaching residue to purify the environment. Low production costs and simple operation. The metathesis reaction is carried out in a low-density ammonia system (the metathesis reactant is dissolved in recovered ammonia water), and the crystal nucleus formed is smaller. It is non-toxic and safe. The ammonia solution after synthesis and separation is returned to the leaching. There is no waste water in the whole production process. The produced waste residue meets the national solid waste discharge standard for efflux, conforms to the national industrial policy, and is an environmentally friendly “green” type process.

...

As they mimic the synapses in biological neurons, memristors became the key component for designing novel types of computing and information systems based on artificial neural networks, the so-called neuromorphic electronics (Zidan, 2018Wang and Zhuge, 2019Zhang et al., 2019b). Electronic artificial neurons with synaptic memristors are capable of emulating the associative memory, an important function of the brain (Pershin and Di Ventra, 2010). In addition, the technological simplicity of thin-film memristors based on transition metal oxides such as TiO2 allows their integration into electronic circuits with extremely high packing density. Memristor crossbars are technologically compatible with traditional integrated circuits, whose integration can be implemented within the complementary metal–oxide–semiconductor platform using nanoimprint lithography (Xia et al., 2009). Nowadays, the size of a Pt-TiOx-HfO2-Pt memristor crossbar can be as small as 2 nm (Pi et al., 2019). Thus, the inherent properties of memristors such as non-volatile resistive memory and synaptic plasticity, along with feasibly high integration density, are at the forefront of the new-type hardware performance of cognitive tasks, such as image recognition (Yao et al., 2017). The current state of the art, prospects, and challenges in the new brain-inspired computing concepts with memristive implementation have been comprehensively reviewed in topical papers (Jeong et al., 2016Xia and Yang, 2019Zhang et al., 2020). These reviews postulate that the newly emerging computing paradigm is still in its infancy, while the rapid development and current challenges in this field are related to the technological and materials aspects. The major concerns are the lack of understanding of the microscopic picture and the mechanisms of switching, as well as the unproven reliability of memristor materials. The choice of memristive materials as well as the methods of synthesis and fabrication affect the properties of memristive devices, including the amplitude of resistive switching, endurance, stochasticity, and data retention time.

...